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Synchronization of semiconductor lasers with coexisting attractors
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We study synchronization of unidirectionally coupled optical bistable systems. In particular, we consider two
semiconductor lasers with an external cavity, which exhibit, when isolated, coexistence of two different attrac-
tors: fixed point and chaos, fixed point and one periodic orbit, and two periodic orbits with different periods.
The analysis is performed with a cross-correlation function between the master and slave laser oscillations
calculated with model equations based on the Lang-Kobayashi approach. Depending on both the laser operat-
ing point and the coupling strength, different bifurcations (Hopf, period doubling, saddle node, torus, and
crisis) and diverse dynamical regimes (steady state, periodicity, quasiperiodicity, bistability, and chaos) occur
in the route from asynchronous motion to complete synchronization. We show some similarities and differ-
ences between synchronization of monostable and bistable lasers.
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I. INTRODUCTION

Many dynamical systems, such as electronic circuits [1],
lasers [2], mechanical systems [3], turbulent flows [4], bio-
logical systems [5], and chemical reactions [6] exhibit coex-
istence of two or more attractive states for the same values of
the system parameters. This phenomenon is referred to as
generalized multistability, where the actual state is deter-
mined by initial conditions only. In recent years the interest
in studying such systems has increased, essentially because
of their potential applications as mechanisms for memory
storage in artificial and biological neural networks [7].

In spite of numerous works devoted to synchronization
phenomena in monostable systems (see, e.g., [8] and refer-
ences therein), synchronization of systems with coexisting
attractors still remains a long-standing and challenging prob-
lem with broad interdisciplinary interest; because of the pos-
sible applications, a deeper understanding of the fundamental
aspects of coherent complex dynamics is needed. The first
attempts to attack this problem were made by studying the
synchronization of a coupled system where multistability re-
sulted from the coupling due to the increase in the system’s
complexity [9]. Two different chaotic attractors appeared in
mutually coupled identical systems, e.g., Rossler oscillators
[10], or in structurally different systems coupled in a master-
slave configuration, such as Lorenz and Rdssler oscillators
[11]. Only recently has synchronization of coupled systems
which, being isolated, exhibit the coexistence of attractors
been studied [12]. In particular, when two unidirectionally
coupled Rossler-like electronic circuits with coexisting cha-
otic attractors have been used, different types of synchroni-
zation (intermittent, phase, anticipated, period-doubling syn-
chronization) have been found in the route from
asynchronous motion to complete synchronization as the
coupling is increased.

Lasers are among the most convenient dynamical systems
for theoretical and experimental studies of synchronization
phenomena, as well as for their applications in optical com-
munication networks. Research has been made for synchro-
nization in different types of lasers, e.g., solid state [13], CO,
[14,15], fiber [16], and semiconductor lasers [17]. Semicon-
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ductor lasers have attracted more attention due to their direct
compatibility with existing optical fiber communications
technology (see, e.g., [18] and references therein). Moreover,
semiconductor lasers have a particular feature that distin-
guishes them from other types of lasers: its relaxation oscil-
lation frequency is usually very high (several gigahertz),
which is approximately four orders of magnitude higher than
the fundamental frequencies of gas, solid-state, and fiber la-
sers; this makes semiconductor lasers excellent optical de-
vices for fast information transmission. This feature enables
complex dynamics to appear when two semiconductor lasers
are coupled, even if both were operating in a steady-state
regime when isolated, because, when a small detuning of
their optical frequencies interacts with the laser relaxation
oscillation frequency, the system often goes through regions
of bifurcations and chaos. In fact, the frequency detuning
acts as an additional degree of freedom in the coupled sys-
tem. It was shown first theoretically [17] and then confirmed
experimentally [19] that unidirectionally coupled chaotic
semiconductor lasers with optical feedback can be synchro-
nized and used in encoded communications systems. Com-
plete synchronization is achieved when the lasers are well
matched, i.e., when they operate at the same lasing frequen-
cies.

Like any other complex dynamical systems, lasers can
display coexistence of attractors. The first experimental evi-
dence of multistability in lasers was demonstrated by Arec-
chi et al. [20] in a loss-modulated CO, laser. Later, multista-
bility was detected in other lasers, including a neodymium-
doped yttrium aluminum garnet (Nd:YAG) laser with
intracavity second-order harmonic generation [21] and a fi-
ber laser [22]. Recently, we have shown that the complex
dynamics of an external cavity semiconductor lasers (ECSL)
allows coexistence of steady-state, periodic, quasiperiodic, or
chaotic attractors [23]. These advantages make ECSLs excel-
lent candidates for studying synchronization phenomena in
coupled multistable systems. The description of the dynami-
cal behavior of such lasers usually requires delay differential
equations [24], where the delayed feedback is responsible for
the complexity emergence, in particular, multistability
[25,26].
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TABLE 1. Parameters used in simulations.
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In the last two decades, the ECSL dynamics has been
extensively studied due to the important applications in in-
terferometric sensors, chaotic optical communication, etc.
(see [27] and references therein). Such parameters as feed-
back strength, feedback length, and wave initial phase in the
external cavity can be used as control parameters to obtain
different dynamical regimes, including periodic and quasip-
eriodic oscillations, low-frequency chaotic fluctuations, and
coherent collapse. Recently, we have shown that the dynam-
ics of a semiconductor laser with two external cavities could
be adequately controlled by properly adjusting both the
length and the feedback strength of the external cavities [23].
The analysis of codimensional-2 state diagrams of ECSLs
has demonstrated that steady states and different periodic
orbits can be locked at some rational multiple of the phases
of the external cavities, forming Arnold tongue structures in
the parameter spaces of the external cavity length, feedback
strength, and pump parameter. Phase-locking methods are of
great significance in optics, and often used to improve the
light intensity [28,29]. Furthermore, we have demonstrated
that a laser with a very long external cavity is always un-
stable [23]. The common occurrence of such behavior in
feedback systems has been confirmed both theoretically and
experimentally for different types of lasers. For example, in
CO, lasers coupled in an axisymmetricfold configuration,
various cavities were phase locked when the curvature radius
of the control mirror front surface was properly adjusted
[28]. Recently, an integrated device composed of a semicon-
ductor laser and a double cavity has been proposed for
chaos-based communications [30]. Modern studies of a peri-
odically driven semiconductor laser subject to optical feed-
back from a microcantilever demonstrated the interspike be-
havior of the light intensity, which has a potential application
for resonant sensing [31].

This paper is devoted to a detailed numerical study of the
ECSL dynamics and synchronization of two identical ECSLs
in a master-slave configuration. First we study synchroniza-
tion of monostable lasers, i.e., when each laser has a single
attractor. Then we investigate the case when two lasers, be-
ing isolated, each exhibit the coexistence of two different
attractors, some combination of fixed points, periodic or cha-
otic orbits. We address our research to the general problem:
When coupled, how do these multistable lasers synchronize?
Which of the coexisting attractors is selected or how does the
coupling strength affect the coupled system? What types of
bifurcations appear in the coupled system and what route
from asynchronous motion to complete synchronization is
chosen for different coexisting attractors?

The rest of the paper is organized as follows. In Sec. II we
describe the laser model and study dynamics of a single
ECSL by analyzing its bifurcation diagrams in one, two, and
three dimensions. We show a very rich dynamics including
coexistence of different attractors. To reveal the features in-

herent in coupled multistable systems we first consider in
Sec. IIT laser synchronization in the monostability regions
and then, in Sec. IV, we study synchronization in different
bistability regions and compare the results with those ob-
tained for monostable lasers. Finally, the main conclusions
are given in Sec. V.

II. DYNAMICS OF AN EXTERNAL CAVITY
SEMICONDUCTOR LASER

A. Model equations

ECSLs can be modeled by the following equations based
on the well-known Lang-Kobayashi approach [17,24]:

=0 +ja)(g(1vm(r) -Ny 1 )Emu)

1 +5|E,(0)]? 7,/ 2
+ kE,(t — T)exp(— ip), (1)
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where the subscript m stands for the master laser, E(z) is the
amplitude for the slowly varying complex electrical field,
|E,|*=P,, is the optical power in terms of the number of
photons, N(z) is the carrier number, « is the linewidth en-
hancement factor, g is the gain parameter, N, is the carrier
number at transparency, s is the gain saturation coefficient, 7,
and 7, are the photon and carrier lifetimes respectively, «
=[(1-R)/7.]VR./R is the feedback strength, 7 is the exter-
nal cavity round-trip time, R and R, are the facet power
reflectivities of the laser and of the feedback external mirror,
¢ e[0,27] is the phase, I is the bias current (the laser
threshold current /;=14.7 mA), and e is the electron charge.
Table I shows the simulation fixed parameters, the param-
eters «, 7, and ¢ are varied for every specific case considered
in this paper to construct codimensional-one, -two, and
-three bifurcation diagrams.

III. BIFURCATION DIAGRAMS

As we said before, the dynamics of a solitary ECSL has
been extensively studied; for moderate and strong feedback
strengths ECSL displays a very complex dynamical behavior,
from steady states and periodic orbits to quasiperiodicity and
chaos [23,32,33]. Moreover, for some parameters, an ECSL
exhibits coexistence of different attractors [34]. This phe-
nomenon can be found through codimensional-1 bifurcation
diagrams, such as presented in Fig. 1. By taking different
initial conditions, we encounter regions of coexistence of a
continuous wave (cw) regime (fixed point) with chaos (CH),
cw with a period 2 (P2) attractor, and a period-1 (P1) with a
P2 attractor. In our laser and, in the parameters range we
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FIG. 1. Bifurcation diagram of laser peak power as a function of
feedback strength demonstrating coexistence of different attractors.
¢=m and 7=0.4 ns".

used, we were unable to find the coexistence of different
chaotic regimes, as in the Rossler oscillator [12].

To better understand the ECSL dynamics, we also con-
struct the three-dimensional (3D) bifurcation diagram using
&, k, and T as control parameters, shown in Fig. 2. For small
feedback strengths (k<7.5 ns™!), the dynamics of the ECSL
has a regular behavior (steady states and periodic orbits),
whereas for a larger feedback (k>7.5 ns™') the laser be-
comes involved in an irregular motion, such as quasiperiod-
icity and chaos. In the 3D bifurcation diagram in Fig. 2, the
boundaries between black and yellow regions are the Hopf
bifurcation surfaces, between yellow and blue regions are the
period-doubling bifurcation surfaces, and between yellow
and white regions are either torus or crisis bifurcation sur-
faces.

Three selected slices of the 3D diagram, taken each in
different directions, are shown in Fig. 3 and represent the
codimensional-2 bifurcation diagrams, where we fix «
=10 ns™! [Fig. 3(a)], 7=0.25 ns [Fig. 3(b)], and ¢=0 [Fig.
3(c)]. These 2D diagrams display a 2-periodic structure
with respect to phase ¢ in good agreement with previous
findings [23,34].
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FIG. 2. (Color online) Laser state diagram in 3D parameter
space of feedback strength, feedback length, and external round-trip
time. The fixed points are shown in black, period 1 in green (light
gray), period 2 in blue (dark gray), period 3 in red (gray), and
quasiperiodic or chaotic orbits in white. See [37] for a movie cor-
responding to this figure.
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FIG. 3. (Color online) Codimensional-2 bifurcation diagrams in
parameter spaces of (a) x and 7 for ¢=27n (n=0,*1,=*2,...),
(b) ¢ and 7 for k=10 ns™', and (c) k and ¢ for 7=0.25 ns.

IV. COUPLED LASERS IN MONOSTABILITY REGIONS

We start our research on synchronization with the case of
coupled ECSLs in monostability regions, to be able later on
to compare its features with those inherent to multistable
systems. In this section, we consider three different cases:
uncoupled ECSLs operating in a monostable steady-state
(fixed point), periodic, and chaotic regimes.

A. Model equations for slave laser

The system of two identical unidirectionally coupled
ECSLs can be modeled by four differential equations, two
for the master laser (ML) [Egs. (1) and (2)] and two for the
slave laser (SL). The equations for the SL can be written as
follows:

gIN() =Ny 1 )E.Y(t)
2

Es(t)=(1+ja)<m—:p

+ KE(t — T)exp(-ig) + yE,(t)exp(- jo,1),  (3)
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FIG. 4. Dynamics of coupled monostable lasers. (a) Bifurcation
diagram of SL peak power when uncoupled lasers are in a steady-
state regime; (b),(c) bifurcation diagram and cross correlation be-
tween ML and SL when both lasers are in a period-1 regime; and
(d) cross correlation between ML and SL when both lasers are in a
chaotic regime. The dashed lines bound the region of coexistence of
two periodic orbits with different frequencies.
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where the subscript s stands for SL, §,, is the detuning be-
tween the optical frequencies of the free-running ML and SL
(for simplicity, we consider &,,=0), and vy is the coupling
strength related to the injected field from the ML into the SL
(y=50 ns~! corresponds to the case when approximately
22% of the ML output power is injected into the SL). The
parameters «, 7, ¢, and vy are varied for every specific case
considered in this paper.

B. Steady-state regime

First, we consider the case when both lasers are isolated
and operate in a monostable cw regime. This regime can be
found for k=2.5 ns™!, 7=0.43 ns, and ¢=0. It is known that
moderate optical injection induces various bifurcations in the
SL, such as Hopf, period-doubling, and saddle-node bifurca-
tions [35]. Figure 4(a) shows the bifurcation diagram of the
SL peak power as a function of the coupling parameter 7. In
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the same figure, we plot the frequency f of the laser oscilla-
tions.

As vy is increased, the dynamics of the SL is characterized
by the following bifurcations.

(1) Steady-state emission (cw) (y<<1 ns™).

(2) Hopf bifurcation at y=1 ns~! leading to periodic os-
cillations (P1) with relaxation oscillation frequency f=f,
=6 GHz (1<y<10 ns™").

(3) Forward period-doubling bifurcation at y=10 ns™';
the first-order harmonic of the oscillation frequency f in-
creases as 7 is increased within 10<y<20 ns™'.

(4) Backward period-doubling bifurcation at 7y
~17.5 ns™! leading to P1; f continues to increase with 7.

(5) Saddle-node bifurcations at y=19.7 and 21 ns™! lead-
ing to the coexistence of two P1 regimes with different fre-
quencies f; and f>; f, increases linearly with 7.

(6) Inverse Hopf bifurcation at y~36.3 ns™!; the peak
power rapidly decreases as 7y approaches this bifurcation
point, resulting in steady-state emission within 36.3<<vy
<37 ns.

(7) Another Hopf bifurcation at y~37 ns~' leading to pe-
riodic oscillations with higher f, linearly increasing up to
double the relaxation oscillation frequency f=2f,.

(8) Another inverse Hopf bifurcation at y=~50.5 ns™! re-
sulting in steady-state emission.

One can see that, even in this relatively simple case of the
coupled cw ECSLs, the dynamics is rather complicated. Pre-
vious studies of optical injection in semiconductor lasers
without an external cavity have also underlined the complex
behavior; however, the oscillations have been observed only
with frequencies corresponding to the offset of the beating
between the laser frequency and the frequency of the injected
light [36]. It is of special interest that in the case of ECSLs
the oscillation frequency depends on the coupling parameter.
Another interesting observation is that a moderate coupling
of two identical cw ECSLs can induce bistability (in our
case, periodic regimes with different frequencies).

C. Periodic regime

Now consider the case when both ML and SL are in a
periodic regime. A period-1 regime is realized for the follow-
ing parameters: k=4 ns~!, 7=0.4, and @=. The bifurcation
diagram of the peak SL power versus the coupling strength
shown in Fig. 4(b) displays a very rich synchronization dy-
namics: period 1 (P1), period 2 (P2), quasiperiodicity (QP),
and chaos (CH) with periodic windows (P3) are observed for
different values of . To quantitatively measure synchroniza-
tion, we calculate the normalized cross correlation Corr be-
tween the ML and SL output powers:

C()rr([) _ <[Pm(t,)Ps(t, - t) - PmPs:|>l’ , (5)

0,05

where (- -+) stands for the time average, and P,,, P, and o,
o, are the means and standard deviations of the ML and SL
powers, respectively. In this paper we take into consideration
only isochronous synchronization, i.e., we calculate Corr(0).
The cross correlation between ML and SL versus vy is shown
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in Fig. 4(c). As the coupling is increased, the synchronization
dynamics goes through the following stages.

(1) P1 orbit, complete correlation (y<<1.5 ns™').

(2) Period-doubling route to chaos; Corr decreases with y
and reacllles its minimum value in the chaotic regime at 7y
~[2ns™.

(3) Crisis at y=19.5 ns™! followed by fully correlated P1
which in turn also undergoes the period-doubling bifurcation
at y=21 ns~".

(4) Inverse crisis bifurcation (at y=~22 ns~') resulting in
chaos; weak correlation.

(5) Another crisis (at y=~31 ns~") followed by a P3 win-
dow at 31<y<34 ns™\.

(6) Saddle-node bifurcation at y~34 ns~! leading to
chaos; correlation is improved as 7 is increased.

(7) Quasiperiodicity with larger correlation (34<y
<50 ns™).

(8) Inverse torus bifurcation at y=~50 ns~' leading to a
strongly correlated P1.

D. Chaotic regime

Synchronization of monostable chaotic lasers has been
extensively studied both numerically and experimentally (see
[18] and references therein). First, Mirasso et al. [17] showed
theoretically that unidirectionally coupled chaotic semicon-
ductor lasers with optical feedback can be completely syn-
chronized, which can be very useful for secure communica-
tion systems. Later, Sivaprakasam and Shore [19]
experimentally obtained synchronization of chaotic ECSLs.
To complete the study of our system, we also consider
coupled chaotic lasers. We chose the chaotic regime with the
following parameters: k=25 ns™!, 7=1 ns, and ¢=1. The
cross correlation versus 7y is shown in Fig. 4(d). Complete
synchronization is achieved when y=60 ns~'.

Thus, the dynamics of coupled monostable ECSLs is very
complex, especially for periodically oscillating lasers [Figs.
4(b) and 4(c)], where the moderate coupling induces differ-
ent types of bifurcations, as well as bistability.

V. COUPLED LASERS IN BISTABILITY REGIONS

In this section we study synchronization of two bistable
lasers, i.e., we begin with the ML and SL uncoupled, oper-
ating in different regimes since their initial conditions are
different, and change the coupling parameter to study the
dynamics of the coupled system. We explore three sets of
parameters to get the coexisting attractors shown in Fig. 1. In
particular, we find in these regions the coexistence of chaos
(CH) with cw, cw with P2, and P2 with P1. Below we will
analyze these three cases in detail.

A. Coexistence of chaos and fixed point

In this bistable regime we fix k=12.7 ns™! (Fig. 1). There
are two possible situations dependent on the initial state of
the ML and SL: the ML is cw and the SL is chaotic, and vice
versa. We consider these two cases separately.
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FIG. 5. Dynamics of coupled ECSLs in a bistability region with
coexisting chaos and fixed point. (a) Bifurcation diagram of SL
peak power when the SL was cw and the ML was chaotic and (b)
cross correlation between ML and SL when the SL was chaotic and
the ML was cw, as a function of coupling strength. The dashed lines
bound the bistability region.

1. cew ML and chaotic SL

Figure 5(a) shows the bifurcation diagram of the SL peak
power versus . The dynamics is similar to that for the
monostable steady-state lasers [compare with Fig. 4(a)]. Ini-
tial chaos in the SL abruptly disappears at very low coupling,
giving rise to a cw regime. Then, as in the monostable case,
P1 appears in the Hopf bifurcation followed by a bistability
region with coexisting P1 and fixed point. This differs from
the monostable case where two P1 attractors coexist. Another
difference is that we do not observe here the period-doubling
bifurcation. The common features are the alternation of the
periodic and cw regimes and the bistability region where f
jumps from f, to 2f, as vy is increased.

2. Chaotic ML and cw SL

A completely different dynamics is observed when we
start out with a chaotic ML and the SL operating in a steady-
state regime. Figure 5(b) shows the cross correlation between
ML and SL as a function of the coupling parameter. The
correlation increases almost linearly as 7y is increased and the
lasers become completely synchronized for y=60 ns~!. As
expected, the dynamics is similar to that of the monostable
case when both lasers were chaotic [compare with Fig. 4(d)].
Only a very small amount of radiation injected from the
chaotic ML into the cw SL drives the SL trajectory toward
the coexisting chaotic attractor; for larger y we now have the
case of coupled chaotic lasers.

B. Coexistence of periodic orbit and fixed point

The coexistence of a P2 orbit with a steady state is ob-
served for 7=0.2, ¢=0, and 14.8<k<15.5 ns~!. Below we
consider two possible variants.
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FIG. 6. Dynamics of coupled ECSLs with coexisting fixed point
and periodic orbit. (a) Bifurcation diagram of SL peak power when
the ML was in the cw and the SL in the P2 regime; (b),(c) bifurca-
tion diagram and cross correlation when the ML was in the P2 and
the SL was in the cw regime. The dotted line indicates the boundary
between chaotic and quasiperiodic regimes.

1. cw ML and periodic SL

We first consider the case when the ML is uncoupled and
works in a steady-state regime and SL is in P2. In the bifur-
cation diagram of the SL peak power [Fig. 6(a)], we can see
that the P2 regime disappears already at a very weak cou-
pling (y<<0.5 ns~!), which induces a cw regime. The dynam-
ics is simpler than for the cases considered above, when the
ML was also in a steady state [compare with Figs. 4(a) and
5(a)]; here only one P1 region exists between the forward
and the inverse Hopf bifurcations, so that the SL stays in a
steady state only for small and large ; furthermore, no bi-
stability is observed.

2. Periodic ML and cw SL

The bifurcation diagram for the case when the ML and SL
are initially in the P2 and cw regimes, respectively, is shown
in Fig. 6(b). The dynamics is very rich: as vy is increased, first
a chaotic and then a quasiperiodic regime arises, finally to
terminate in the inverse torus bifurcation (at y=~47 ns™') re-
sulting in P2. In Fig. 6(c), one can see how the cross corre-
lation between ML and SL oscillations resembles the dynam-
ics. In general, the correlation with a chaotic regime is
weaker than with a quasiperiodic one.

C. Coexistence of two periodic orbits with different periods

The richest dynamics is observed in the case of coexist-
ence of different periodic regimes. Here we consider the case
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FIG. 7. (a),(c) Bifurcation diagrams and (b),(d) cross correla-
tions of ECSL with coexisting periodic orbits when initially (a),(b)
the ML was in P2 and the SL in P1 and (c),(d) the ML in P1 and the
SL in P2. Two QP orbits coexist in the range between the two
dashed lines. The dotted lines show torus bifurcations.

when P1 coexists with P2 (at k=13.3 ns™!, 7=0.3, and ¢
=) as shown in Fig. 1. There are two possible situations.

1. Period-1 ML and period-2 SL

Figures 7(a) and 7(b) show the bifurcation diagram of the
SL peak power and the cross correlation between ML and
SL, as functions of the coupling parameter, when the ML
initially was in P1 and the SL in P2. For a tiny coupling
(y<0.5 ns7!), chaos arises, ending in crisis (at y=3.5 ns™!),
followed by P2, which in turn is converted into QP (at y
~11.5 ns”"). Then, as v is further increased, another QP
attractor is generated through the saddle-node bifurcation (at
v=~17.5 ns!), which coexists with the previous QP attractor,
so that within a certain range of y (17.5<y<19 ns™!) two
QP regimes coexist. Finally, at y=19 ns~! the first QP dis-
appears, and the second QP continues up to the inverse torus
bifurcation (at y=43.5 ns™') leading to P1.

2. Period-2 ML and period-1 SL

Another scenario is observed when the ML initially was
in P2 and the SL in P1. Figures 7(c) and 7(d) show the
bifurcation diagram and cross correlation for this case. The
synchronization dynamics is characterized by a set of torus
bifurcations. At a very low coupling, P1 undergoes the first
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torus bifurcation (at y=0.5 ns™!) leading to QP which then
is converted into chaos in the second torus bifurcation (at
y=~2.5ns7!). As vy is further increased, the laser undergoes
the inverse torus bifurcation (at y=~24 ns~') where chaos is
transformed into QP terminated in the second inverse torus
bifurcation (at y~50 ns™'). One can see in Fig. 7(d) that
within the QP regions the cross-correlation dependence has a
local maximum with Corr=0.9. These regions of general-
ized synchronization are very promising for secure commu-
nication with multistable lasers.

VI. CONCLUSIONS

In this work we have investigated dynamics of two unidi-
rectionally coupled external cavity semiconductor lasers in
monostability and bistability regions. The numerical simula-
tions have been performed with a delayed equations model
based on the Lang-Kobayashi approach. By analyzing
codimensional-1, -2, and -3 bifurcation diagrams in the
spaces of the main laser parameters (feedback strength, feed-
back delay time, and laser field phase), we have shown that
the solitary ECSL displays very rich dynamics characterized
by diverse bifurcations leading to different dynamic regimes.
Within certain parameter ranges, the solitary ECSL exhibits
coexistence of different attractors (steady state, periodic, and
chaotic) which we explored to study the synchronization of
two coupled ECSLs.

The dynamics becomes more complex when two ECSLs
are coupled. The analysis has been performed with bifurca-

PHYSICAL REVIEW E 79, 016202 (2009)

tion diagrams of the slave laser peak power and the cross
correlation function between oscillations of the master and
slave lasers, versus the coupling strength. Even in the mono-
stability region, the dynamics of the coupled system is very
rich; as the coupling is increased, the trajectory undergoes
different bifurcations (Hopf, period doubling, torus, and cri-
sis), giving rise to diverse dynamical regimes (periodic, qua-
siperiodic, and chaotic) and bistability. To study the region of
bistability, one has to take into account the initial states of
the uncoupled lasers; the scenario is mainly determined by
the ML operational regime and almost independent of the SL
initial state. Each specific case of bistability is characterized
by its own scenario in the route from uncorrelated motion to
full correlation, as the coupling is increased. The cross-
correlation analysis allowed us to discover regions with
strong correlation for moderate coupling between a periodic
ML and a quasiperiodic SL, i.e., the existence of a certain
functional dependence between their oscillations, known as
generalized synchronization. This regime may be useful for
secure communication with bistable ECSLs. It our belief that
many features of synchronization dynamics of the coupled
ECSLs encountered in this work are inherent to a wider class
of systems with coexisting attractors.
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